西門子醫療 Digital Marketplace現已開放使用 MONAI 整合,可輕鬆將AI用於臨床工作流程
36 億,這是全球每年為診斷、監測及治療各種病症而進行的醫學影像檢測數量。
加快所有這些 X 光、CT 掃描、MRI(核磁共振)和超音波檢查的處理和評估,對於幫助醫生管理工作量和改善治療成果而言至關重要。
這正是 NVIDIA 推出 MONAI 的原因,MONAI 是一個開源的研發平台,可用於醫療影像及其他領域的人工智慧(AI)應用。MONAI 結合醫師與資料科學家,發揮醫療數據的力量,為醫療 AI 工作流程建立深度學習模型與可部署的應用。
本週在北美放射學會(RSNA)的年會上,NVIDIA 宣布西門子醫療(Siemens Healthineers)已採用 MONAI 所提供 MONAI Deploy 模組,該模組可拉近從研究到臨床生產的差距,以提升醫療影像 AI 工作流程整合至臨床部署的速度與效率。
全球各地已有超過 15,000 台醫療設備安裝西門子醫療的 Syngo Carbon 及 syngo.via 企業影像平台,可協助臨床醫師更易於讀取多種來源的醫療影像,並且從中獲得見解。
開發人員在建立 AI 應用時,通常會使用各種框架。這使得將應用部署到臨床環境裡成為挑戰。
只需幾行程式碼,MONAI Deploy 就能構建可以在任何地方運行的 AI 應用。它是一款在臨床生產過程中開發、打包、測試、部署和運行醫療 AI 應用的工具。使用 MONAI Deploy 將能簡化開發醫療影像 AI 應用,並將其整合至臨床工作流程的過程。
西門子醫療平台上的 MONAI Deploy 顯著加快了整合 AI 的流程,使用者只要點幾下滑鼠,便能把訓練好的 AI 模型移植到現實的臨床環境,而過去這件事要用到好幾個月的時間。這有助於研究人員、企業和新創公司更快把他們的應用交給放射科醫師使用。
西門子醫療數位科技與研究部門主管 Axel Heitland 表示:「藉由加快部署 AI 模型,醫療機構可以用比過去更快的速度從AI醫療影像領域的最新進展獲益。研究人員使用 MONAI Deploy可以快速自訂 AI 模型,以及將創新成果從實驗室搬到臨床實務環境裡,讓全球數千名臨床研究人員直接在其 syngo.via 和 Syngo Carbon 影像平台上獲得 AI 所驅動的進步成果。」
在由 MONAI 開發出的應用程式加持下,這些平台能夠大幅簡化 AI 整合工作。在西門子醫療旗下 Digital Marketplace 上便能輕鬆提供和使用這些應用,使用者可以瀏覽、選擇及與自己的臨床工作流程無縫整合。
MONAI 生態系促進創新和採用
已經推出五年的 MONAI,下載量超過 350 萬次,有來自世界各地的 220 位貢獻者,並在超過三千份刊物的致謝文裡被有提及,在 MICCAI 挑戰賽拿過 17 次冠軍,且在許多臨床產品中有使用。
在最新的 v1.4 版 MONAI 裡有提供多項更新內容,讓研究人員和臨床醫師有更多機會利用 MONAI 的創新成果,並且為西門子醫療 Syngo Carbon、syngo.via 和西門子醫療 Digital Marketplace 做出貢獻。
MONAI v1.4和相關NVIDIA產品的更新項目包括新的醫學影像基礎模型,可以在MONAI裡客製化及部署為 NVIDIA NIM 微服務。下列模型現已開放做為 NIM 微服務使用:
- MAISI(Medical AI for Synthetic Imaging)是一種潛在擴散生成式 AI 基礎模型,可模擬高解析度、全格式 3D CT 影像及其解剖分割。
- VISTA-3D 是 CT 影像分割的基礎模型,能原生提供精準執行效能,涵蓋超過 120 個主要器官類別。它還提供有效的適應性和零樣本功能,以學習分割新的結構。
除了 MONAI 1.4 版的主要功能,現在還能透過MONAI 的 VLM GitHub 儲存庫使用新的 MONAI 多模態模型(或稱為 M3)。M3 這個框架可利用醫療 AI 專家(擴充任何多模態大型語言模型,例如 MONAI 的 Model Zoo 所提供已訓練完成的 AI 模型。VILA-M3 基礎模型中展現了這個新框架的強大功能,該模型目前已在 Hugging Face 上提供最先進的放射影像copilot(副駕駛)效能。
MONAI 串連起醫院、醫療領域新創公司和研究機構
全球領先的醫療機構、學術醫療中心、新創公司和軟體供應商皆採用和推進 MONAI 的發展,包括:
- 德國癌症研究中心帶領 MONAI 的基準與指標工作小組,該工作小組提供衡量 AI 效能的指標,以及如何和何時使用這些指標的指引。
- 紀念斯隆-凱特琳癌症中心(Memorial Sloan Kettering Cancer Center,MSK)旗下 Nadeem 實驗室率先使用 MONAI,以雲端方式部署多種 AI 輔助註釋管道和病理資料推論模組。
- 美國科羅拉多大學醫學院的教師開發了以 MONAI 為基礎的眼科工具,利用各種影像模式檢測視網膜疾病。該校還帶領進行部分使用 MONAI 的原始聯合學習開發和臨床示範。
- MathWorks 已將 MONAI Label 與該公司的 Medical Imaging Toolbox 進行整合,讓產學兩界數千名從事醫療和生物醫學應用的 MATLAB 使用者可以使用到這些先進的醫學影像 AI 和 AI 輔助註解功能。
- GSK 正在探索 MONAI 基礎模型,例如用於影像分割的 VISTA-3D 和 VISTA-2D。
- Flywheel 提供一個其中包括 MONAI 的平台,用於簡化影像資料管理、自動執行研究工作流程,以及支援 AI 開發與分析功能,且可視研究機構和生命科學組織的需求調整規模。
- Alara Imaging 在 2024 年醫學影像資訊學會年會上發表該公司將VISTA-3D等MONAI 基礎模型與Llama 3等大型語言模型整合的成果。
- RadImageNet 正在探索使用 MONAI 的 M3 框架來開發尖端視覺語言模型,利用 MONAI 的專家影像 AI 模型來產生高品質的放射檢測報告。
- Kitware 提供圍繞 MONAI 的專業軟體開發服務,協助將 MONAI 整合到設備製造商的客製化工作流程,以及主管機關核准的產品中。
研究人員與企業也在雲端服務供應商上使用 MONAI 來執行和部署具擴充能力的 AI 應用。開放使用 MONAI 的雲端平台有 AWS HealthImaging、Google Cloud、Microsoft Cloud for Healthcare 旗下的 Precision Imaging Network 以及 Oracle Cloud Infrastructure。